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The electron localization function (ELF) is a key diagnostic of
bonding and electronic structure across materials, including high-
pressure regimes. However, predicting ELF directly from composition
and crystal structure is difficult because it is highly non-linear. We
develop a deep learning model that transforms a 3D superposition
of atomic densities (SAD) into ELF on the unit-cell grid. Because
SAD is evaluated in the actual lattice, the representation can
implicitly include pressure and can rapidly score candidate metal
sublattices (templates) for compressed compounds. Our architecture
is a periodic 3D U-Net with circular padding, explicit space-group
symmetry pooling using Seitz operators in the local patch frame,
and memory-efficient training on periodic patches with epoch-wise
origin jitter. Trained on 50,000 metal-only structures, the model is
symmetry-aware at both data and network levels and is designed to
scale to large unit cells without significant memory cost.

Background

Electron Localization Function

ELF is computed from a dimensionless quantity
that compares the local kinetic-energy density of
electrons to a homogeneous electron gas

High ELF values highlight regions of localized
electrons like bonds, lower ELF values indicate
more delocalized or metallic electrons
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A. Crystal structure and fields
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B. Space-group symmetry
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C. Periodic patches and origin jitter
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Patchify SAD and ELF

— aligned patches patch

(wrap-around indexing)

Tessellate the periodic unit-cell grid into 3D patches (p?)
with wrap-around indexing at boundaries.

D. Symmetry-aware 3D U-Net

Input patch + The U-shaped network with symmetry pooling Output ELF

patch-frame 0 -1 0\ /1 Head: Conv3d patch
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PeriodicConv3d + GN + GELU

Global, symmetry-averaged representation of the patch.

E. Learning the ELF operator

Loss diagram (per-patch supervision)
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Training curves (epoch behavior)
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DFT and ML ELF CaBa Binary System

isosurfaces for the
CaBa and FePb binary
systems show nearly
identical localization
basins around
corresponding Ba and
Pb atoms, with slight
hallucination on the Fe
atoms

DFT ML
Calculated Predicted

FePb Binary System

The model reproduces

both the shape and

relative intensity of

high-ELF lobes,

indicating that it

captures the same

bonding picture as the ek
reference DFT ELF s FRncotes

VOX vs. Epoch
P The VOX term decreases

steadily, showing that the
network is learning point-wise
ELF values across the grid

50 100 The HIST term drops sharply
Epach within the first few epochs and
it S, EPOch quickly plateaus, meaning the
global ELF histogram is matched
early in training

The GRAD term exhibits a
modest initial rise as the
uncertainty-weighted loss terms
rebalance, then decays to a
stable plateau, indicating
smooth, physically consistent
ELF fields

50 100 150
Epoch
GRAD vs. Epoch

0 50 100
Epoch . Parity Plot: ELF Maxima (Metallic Structures)

The parity plot of ELF
maxima over the metallic
test set shows points
tightly clustered along the
y = x line, demonstrating
strong agreement between
predicted and DFT ELF
extrema
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Scatter remains small
across the full range of ELF
maxima suggesting model
transfers well to unseen
crystal chemistries and
symmetries

0.7 0.8
DFT Calculated ELF Maximum

Conclusions and Perspectives

We constructed a symmetry-aware, periodic 3D U-Net that maps
pressure-implicit SAD fields to ELF, trained on 50,000 metal-only
structures

Reproduces DFT ELF across diverse metallic crystals while
remaining fast enough for inner-loop template screening.

Extend the training set beyond metals so the learned SAD—ELF
operator can support a wider range of materials projects and
chemistries.

Generate compressed structures and corresponding DFT ELFs to
explicitly train the model on high-pressure regimes

Use the high-pressure model to rapidly evaluate metal-sublattice
ELF and template strength, enabling fast screening of candidate
metal superhydrides and related high-pressure materials.
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