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Abstract

The electron localization function (ELF) is a powerful diagnostic of bonding and1

electronic structure across materials conditions, including the extreme regimes rel-2

evant to high-pressure chemistry. However, its direct generation from the chemical3

formula and crystal structure is very challenging due to its highly non-linear nature.4

We propose developing a supervised deep learning method that can transform the5

3D superposition of atomic densities (SAD) and yield the ELF. The method can6

naturally incorporate pressure-implicit structural representations and can be used7

to rapidly score candidate metal sublattices (templates) for compounds under com-8

pression. Our approach combines a periodic 3D U-Net with circular padding, an9

explicit symmetry-pooling layer built from space-group Seitz operators in the local10

patch frame, and memory-aware training on periodic patches with epoch-wise ori-11

gin jitter. The model has been trained on 50,000 metal-only structures drawn from12

a curated subset of Alexandria-MP20, using a 90/10 train/test split. Reproducible13

and comparable results have been achieved after detailing the representation, sym-14

metry handling, patching strategy, and learning objectives. Our implementation is15

symmetry-aware at the data and network levels and is designed to scale to large16

unit cells without significant memory use.17

1 Introduction18

The electron localization function (ELF), valued for its bounded range and interpretability, provides a19

powerful assessment of the chemical nature of molecules and compounds [1,2]: regions with ELF20

close to 1 indicate strong localization (e.g., lone pairs, covalent basins), to 0.5 indicates delocalization21

similar to a uniform electron gas, and to 0 tends toward nodes [3,4]. A fast, symmetry-respecting22

predictor of ELF conditioned on crystal structure would thus be a useful “inner loop” for exploring23

candidate materials across a large chemical space [5,6].24

ELF is particularly useful for screening high-pressure compounds, a task hindered by limited data25

since fewer materials are known under extreme conditions. A prominent example is the family26

of metal superhydrides, which have been extensively investigated over the past decade for their27

promise of achieving room-temperature superconductivity [7–10]. The ELF of these superhydrides28

has been demonstrated to correlate strongly with their superconducting behavior. Moreover, the29

ELF associated with the metal sublattices provides a measure of the so-called chemical template30

strength, the essential driving force behind the stability of metal superhydrides. This makes ELF a31

valuable descriptor for identifying candidate superhydrides, especially those stable at lower pressures32

with higher critical temperatures. However, ELF is a highly non-linear function whose values vary33

unpredictably across compounds, making its direct prediction from chemical composition and crystal34

structure a major challenge.35
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We propose to learn ELF directly from a pressure-implicit representation of the crystal: the superposi-36

tion of atomic densities (SAD) rasterized on the unit-cell grid [11-13]. Because the SAD is evaluated37

in the actual lattice (compressed or expanded), pressure enters implicitly via interatomic distances and38

unit cell volumes, without requiring an explicit pressure scalar as input. The task is then a 3D image39

transform on a fixed grid size per sample: given SAD, predict ELF on the same grid. To include40

crystal symmetries and periodicity, we build periodicity into both the data pipeline and the network41

[14]. At data time, we train on periodic patches with epoch-wise origin jitter and pass patch-local42

Seitz operators; at model time, we use circular padding everywhere and average features over the43

patch’s symmetry operations via a batched geometric warp [15-18]. This combination enforces44

invariances that are standard in generative models for crystals such as E(3), while keeping compute45

tractable [19,20].46

2 Background47

2.1 Crystal structure representation48

Let a crystal unit cell be M = (A,X,L) with A = {ai}Ni=1 the atom types, X = [x1, . . . , xN ]T ∈49

[0, 1)N×3 the fractional coordinates, and L ∈ R3×3 the lattice columns. The infinite crystal is the50

periodic set X̂ = {xi +
∑3

j=1 kjej | kj ∈ Z} in fractional space and LX̂ in Cartesian space [21].51

A superposition of atomic density is a one-channel scalar field defined on the unit-cell volume that52

approximates the in-cell electron density using an independent-atom ansatz,53

ρSAD(r) =

N∑
i=1

ρZi(∥r − Lxi∥),

where ρZi is a spherically symmetric density associated with atomic number Zi [22,23]. When54

evaluated on the actual lattice L, ρSAD is implicitly pressure-aware: compression changes L and55

hence interatomic separations, reshaping the superposed density without providing pressure explicitly56

as a feature. We rasterize ρSAD on a regular Nx×Ny×Nz grid covering the unit cell; the supervised57

target is the ELF field on the same grid. Although ELF depends on kinetic-energy density and Pauli58

effects, not just on ρ, the SAD field acts as a physically informed, translation– and rotation-covariant59

summary of local environments that a sufficiently expressive network can map to the bounded ELF.60

2.2 Seitz invariance61

Space-group operations are represented in Seitz form {R | t}, where R ∈ GL(3,Z) ∩ O(3) is an62

integer rotation (orthogonal; the inverse equals the transpose) acting on fractional coordinates and63

t ∈ [0, 1)3 is a fractional translation [16]. The group action on fractional coordinates is x 7→ Rx+ t64

(mod 1); the lattice L transforms as L 7→ LR−1 to preserve Cartesian geometry [24]. Periodic65

E(3) invariance for a crystal-conditioned predictor requires invariance under (i) permutation of atom66

indices, (ii) translation of all atomic positions, (iii) rigid rotations coupled with the induced lattice67

transform, and (iv) periodic choices of the unit cell [25-27]. Generative crystal models enforce these68

symmetries through equivariant backbones; we realize the same principle by averaging features over69

Seitz operations supplied with each sample and by making all convolutions periodic so the domain is70

a 3-torus rather than a bounded box [28].71

2.3 3D convolutional networks on periodic domains72

A 3D convolution with circular padding computes the discrete convolution on the quotient domain73

ZNx
× ZNy

× ZNz
, i.e., a torus, which exactly matches unit-cell periodicity [29]. U-Nets, en-74

coder–decoder architectures with skip connections, provide an effective inductive bias for dense field75

prediction because they aggregate multiscale context while preserving spatial detail through skips76

[30,31]. In a symmetry-aware variant, intermediate feature maps can be warped by group actions and77

averaged, yielding features that are invariant (or equivariant, depending on where the averaging is78

inserted) [32-34]. Our backbone combines these ideas with explicit space-group averaging at input79

and optionally after each stage, ensuring that the predicted ELF respects the crystal’s symmetry class80

up to the numerical tolerance of interpolation.81
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3 Model Architecture82

Figure 1: Symmetry-aware pipeline and model for ELF prediction. SAD and ELF volumetric grids
are sliced into 163 patches with jitter and circular padding; structure- and patch-level Seitz matrices
apply crystallographic symmetry for augmentation. Patches are processed by a 3-D U-Net (box
labels give #channels and spatial size), and a head PConv3d(3×3) → GroupNorm → GELU →
PConv3d(1×1) → Sigmoid produces a 1× 163 prediction. Patch outputs are stitched to reconstruct
the full ELFCAR volume.

3.1 Data loading: patches, Seitz operators, and jitter83

We train on periodic p× p× p patches extracted from SAD/ELF volumes defined on a unit-cell grid84

of size (Nx, Ny, Nz). Patches are sampled with stride s ≤ p using wrap-around indexing so that85

periodic boundaries are exactly respected. To decorrelate the patch lattice from the crystal grid, each86

epoch applies an origin jitter: a single offset (ox, oy, oz) ∈ {0, . . . , s − 1}3 is added to all patch87

starts modulo (Nx, Ny, Nz); jitter is disabled for validation to ensure determinism.88

Each structure provides space-group symmetry as Seitz operators {R | t} in fractional coordinates.89

Because training uses patches, translations are expressed in the patch frame whose fractional origin90

is o = (ix/Nx, iy/Ny, iz/Nz), yielding the transformed translation91

t′ = (Ro+ t− o) mod 1, {R | t} 7→ {R | t′}.

The data loader returns per-patch operators {R | t′} together with the corresponding patch tensors,92

enabling symmetry-consistent warping and averaging during training.93

3.2 3D U-Net backbone with periodic convolutions and symmetry pooling94

We use a 3D U-Net whose convolutions are periodic so that feature extraction respects lattice95

periodicity. Encoder stages downsample and decoder stages upsample in the usual U-Net fashion, and96

the head maps to a single channel with a Sigmoid to bound the ELF in [0, 1]. To enforce space-group97

invariance, we interleave feature extraction with a symmetry-averaging layer that uses the per-item98

Seitz operators (rotations and fractional translations) to sample features under all symmetry-equivalent99

coordinate transforms and average them. This can be applied to the input and, optionally, after each100

encoder/decoder stage, yielding representations invariant to the structure’s space group while retaining101
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equivariance at the sampling-grid level. Training minimizes a composite objective comprising102

voxelwise fidelity, periodic-gradient agreement, and value-distribution alignment. Relative weights103

are learned via uncertainty weighting, and optimization uses AdamW with cosine annealing.104

4 Discussion105

Figure 2: Validation loss decomposed into its three terms across training epochs. Each point is a
per-epoch mean computed from step-level logs. The HIST term drops sharply in the early epochs
and then stabilizes, VOX declines steadily throughout training, and GRAD shows a modest early rise
as the loss weights are learned, followed by a gradual decay to a plateau.

We have demonstrated that a symmetry-aware, periodic 3D U-Net can learn a supervised transforma-106

tion from a pressure-implicit structural field (SAD) to the electron localization function (ELF) on107

the unit-cell torus. The model’s invariances (periodicity and space-group handling by Seitz pooling),108

its memory-aware patch training with origin jitter, and a composite loss that couples voxel fidelity,109

periodic gradients, and value-distribution alignment together yield an operator that is fast enough110

for inner-loop screening of crystal templates. At the same time, our present training set—metal-only111

structures from a curated Alexandria-MP20 subset—places deliberate constraints on composition and112

pressure coverage. Below we outline the near-term steps and longer-term program needed to turn this113

prototype into a practical high-pressure ELF engine for superhydride discovery and broader materials114

design.115

The next step is to expose the model to compression. Although pressure enters implicitly through116

the lattice L in SAD, reliable generalization to the extreme compressions of interest requires that117

the learned mapping see such regimes during training. The most direct next step is to assemble118

a high-pressure ELF training set by (i) generating families of structures at multiple compressions119

for each composition/topology and (ii) computing reference ELFs at those volumes. Two practical120

curricula are natural: (a) isotropic volume sweeps V/V0 ∈ {1.0, 0.9, 0.8, . . .} with fixed fractional121

coordinates, followed by (b) relaxed high-pressure structures including lower symmetry cells to122

capture the complexity of the chemistry at higher pressures.123

The same symmetry-aware pipeline can learn other field-valued operators on the 3-torus by changing124

the target (e.g. charge density, charge density difference) and optionally augmenting inputs with multi-125

channel SADs or gradients. Coupled with differentiable stitching and gradient-aware objectives, this126

suggests a route to fast, lightweight, physically aligned models that can steer closed-loop discovery127

in high-pressure chemistry and general crystal design, while retaining exact periodicity and explicit128

space-group handling.129
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5 Appendix197

File discovery and I/O. The loader discovers triplets of *.npy files with matching stems:198

stem_sad, stem_elf, stem_sym. Arrays are opened via memory-mapped NumPy for low-overhead199

header reads and I/O. The grid shape (Nx, Ny, Nz) is read from the ELF file header and stored per200

sample to support consistent patch extraction and rescaling across structures.201

Patch extraction and channels. The core dataset class emits periodic p × p × p patches with202

optional overlap controlled by a stride s ≤ p. Given integer starts (ix, iy, iz), a patch is cut out203

using np.take(..., mode="wrap") along each axis, which is equivalent to modular indexing and204

exactly enforces periodic boundaries. The input tensor stacks channels in the specified order; by205

default, SAD and ELF are concatenated to form X ∈ RC×p×p×p with C ∈ {1, 2} depending on206

whether the target (ELF) is carried through the loader for supervised training.207

Epoch-wise jitter and samplers. To avoid pathological alignment between the patch lattice and208

the crystal grid, the dataset implements epoch-wise origin jitter. Let (ox, oy, oz) ∈ {0, . . . , s− 1}3209

be a random offset drawn once per epoch from a deterministic seed; patch starts are then210

(ixs+ ox, iys+ oy, izs+ oz) mod (Nx, Ny, Nz).

A dataset hook set_epoch(e) sets this offset deterministically from the seed and epoch num-211

ber. Training samplers call this hook once per epoch in both single-GPU and distributed set-212

tings: _RandomSamplerWithEpoch subclasses RandomSampler to increment an internal epoch213

counter on each __iter__, and _DistributedSamplerWithJitter forwards the framework’s214

set_epoch(e) to the dataset, preserving DDP semantics and data partitioning. Validation uses the215

same stride with jitter disabled.216

Symmetry bookkeeping and batching. Space-group symmetries are provided per structure as217

Seitz operators {R | t} in fractional coordinates, stored as an (R, 4, 4) array with integer rotation218

blocks and fractional translations. Because training uses patches, these global operators must be219

expressed in the patch frame whose fractional origin is o = (ix/Nx, iy/Ny, iz/Nz). The translational220

part is shifted via221

t′ = (Ro+ t− o) mod 1, {R | t} 7→ {R | t′}.
For each item, the dataset returns both the global operators and the patch-frame operators. A dedicated222

collate_patches routine pads ragged symmetry lists in a batch to the maximum group size and223

returns224 (
X, sym_batch, mask, origin_frac, orig_shape, stems

)
,

where sym_batch∈ RB×Rmax×4×4 and mask∈ {0, 1}B×Rmax preserve per-item group sizes for225

downstream weighting and symmetry-averaged computation.226

Periodic convolutions and U-Net wiring. The predictor fθ is a 3D U-Net whose every convolution227

is periodic. A PeriodicConv3d layer performs circular padding of width (k − 1)/2 for an odd228

kernel k and then applies a standard Conv3d with zero explicit padding. Residual blocks comprise229
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PeriodicConv3d → GroupNorm → GELU → (Dropout3d) → PeriodicConv3d → GroupNorm,230

with a residual connection and final GELU, providing stable training at depth. Downsampling uses a231

stride-2 periodic convolution followed by GroupNorm and GELU; upsampling uses trilinear interpola-232

tion followed by periodic convolution, concatenation with the corresponding encoder skip, further233

residual processing, and a periodic “merge” convolution. The head comprises a periodic 3× 3× 3234

convolution, normalization, GELU, a 1× 1× 1 periodic projection to one channel, and a Sigmoid to235

bound the ELF prediction in [0, 1].236

Symmetry pooling (SymmAvg3D). Let f ∈ RB×C×D×H×W be a feature map on the patch grid237

and S = {(R, t′)} the per-item Seitz operators in the patch frame returned by the loader. The238

layer constructs base sampling coordinates ρout ∈ [−1, 1]3 (and the associated fractional grid239

ζout = 12(ρout + 1) ∈ [0, 1]3) and, for each operator, computes the input sampling grid by240

ζin = wrap
(
S−1R−1S ζout − S−1R−1t′

)
, ρin = 2ζin − 1,

where S = diag(W/Nx, H/Ny, D/Nz) rescales between patch-voxel and fractional coordinates and241

wrap projects component-wise to [0, 1). Because R is orthogonal with integer entries, R−1 = R⊤ is242

implemented by transpose for numerical stability. The network samples f at ρin using grid_sample243

in trilinear mode and averages across valid operations with a per-item mask, yielding a symmetry-244

averaged feature map with the same shape as f . The layer is applied to the input SAD and, optionally,245

after every encoder and decoder stage.246

Training objective and optimization. Let ŷ = fθ(x) and y be predicted and true ELF patches. We247

use a voxelwise Smooth-L1 loss Lvox, a periodic-gradient loss248

L∇ = ∥∆xŷ −∆xy∥1 + ∥∆y ŷ −∆yy∥1 + ∥∆z ŷ −∆zy∥1,

where forward differences use circular shifts along each axis, and a soft-histogram KL that compares249

Gaussian-smoothed marginal histograms of ELF values in [0, 1]. Learnable log-precisions ηk balance250

the terms,251

L(θ) =
∑

k∈{vox,∇,hist}

e−ηkLk + ηk,

removing the need for manual loss-weight tuning during training. Optimization uses AdamW with252

cosine annealing; the module is implemented with PyTorch Lightning for reproducibility.253
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